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contributions! They will be accompanied 

by “future directions” slides.
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Bayesian epistemology

• Epistemology: the study of knowledge and uncertainty
• Bayesian epistemology: a formal approach to epistemology that 

interprets beliefs as subjective probabilities over outcomes
• Observer assigns probabilities to uncertain events and updates those 

probabilities in light of new evidence



The algorithmic lens

• Many theoretical questions are optimization questions: what is the 
optimal solution to problem X?

• Example: welfare-maximizing auctions
• Economist’s solution: VCG (find optimal allocation, charge bidders their 

externalities)
• Computer scientist’s complaint: this can’t be done efficiently!

• Algorithmic lens: how can you achieve approximately optimal welfare in polynomial 
computation + communication?

• Instead of finding the optimal solution, looking for satisfactory 
solutions that adhere to real-world constraints

• Coined at Berkeley by members of Theory of Computing research group c. 2000



Algorithmic Bayesian epistemology (ABE)

• The application of the algorithmic lens to Bayesian epistemology

A question belongs to the field of algorithmic Bayesian 
epistemology (ABE) if it involves reasoning about uncertainty 

from a Bayesian perspective, but under constraints that 
prevent complete assimilation of all existing information.



What kinds of constraints?

• Computational constraints
• Approximating Bayesian inference

• Informational constraints
• Forecast aggregation under incomplete information

• Communication constraints
• Agreement protocols

• Strategic constraints
• Prediction markets
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Background on proper scoring rules

• You want to elicit the probability that it will rain tomorrow from an 
expert

• A scoring rule is a way of paying the expert depending on their forecast and 
whether or not it rains

• A scoring rule is proper if the expert is incentivized to report their true belief

• Example 1: quadratic (Brier) scoring rule
• Penalty based on expert’s squared error
• If expert says 70% chance of rain, penalty = ଶ if it rains, ଶ if it doesn’t

• Example 2: logarithmic scoring rule
• Score = log of probability assigned to outcome
• If expert says 70% chance of rain, score = if it rains, if it doesn’t



Incentivizing precision (1/2) 
(Joint work with George Noarov and Matt Weinberg)

• All proper scoring rules incentivize accuracy in forecasts, but what about 
precision?

• Which proper scoring rule most incentivizes experts to do research before 
reporting a forecast?

• Coin with bias uniformly chosen from 
• Expert can flip coin at small cost per flip
• Expert will report a forecast and be scored according to a scoring rule

• Which proper scoring rule incentivizes expert to flip the coin a lot?
• As , which proper scoring rule minimizes expert’s expected error?

• We define an incentivization index to measure this
• And then optimize the index



Incentivizing precision (2/2)
(Joint work with George Noarov and Matt Weinberg)

Quadratic and logarithmic scoring rules, together with optimal scoring 
rules for minimizing expected absolute error and squared error
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Arbitrage-free contract functions
(Joint work with Tim Roughgarden)

• Now suppose we have multiple experts. Experts can collude!
• E.g. if is the quadratic scoring rule, and 3 experts believe 40%, 50%, 90%, they 

can all say 60% and profit, no matter the outcome (“arbitrage”)

• What if experts’ scores are allowed to depend on other experts’
reports?

• This is called a contract function

• Do any contract functions prevent all arbitrage opportunities?
• Yes! For expert , if ି௜ is average of other experts’ reports, ’s reward is

௜ ௜
ଶ

ି௜ ି௜,௝

Total reward depends only on average of all reports Total score is lower for some outcome
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Quasi-arithmetic pooling (1/2) 
(Joint work with Tim Roughgarden)

• After eliciting forecasts from multiple experts, how should the 
aggregator combine them?

• Intuition: should depend on scoring rule. Different scoring rules incentivize 
precision in different ways, e.g. log score incentivizes precision near extreme 
probabilities (compared to quadratic score).

• We define an aggregation method called quasi-arithmetic (QA) pooling
(with respect to a given proper scoring rule) that takes this into account

• QA pooling averages forecasts based on the experts’ preferences over outcomes 
(induced by the scoring rule)



Quasi-arithmetic pooling (2/2) 
(Joint work with Tim Roughgarden)

• Nice properties of QA pooling
• Maps two most popular scoring rules (quadratic and logarithmic) to two most 

well-studied pooling methods (linear and logarithmic)
• Max-min optimality: maximizes the worst-case improvement over a random 

expert
• Learning expert weights: QA pooling allows for experts to have weights. The 

score of a QA pool of experts is concave in the experts’ weights. So if is 
bounded, weights for QA pooling can be no-regret learned efficiently.

• Ties together two notions of overconfidence
• Axiomatization: the space of QA pools (one per scoring rule) corresponds 

precisely to the space of pooling methods obeying a natural list of axioms



QA pooling: Future directions

• What about QA pooling with weights adding to ?
• Makes sense if experts have pretty different information sources
• Do our results generalize to arbitrary weights?

• Bayesian justifications of “generalized” QA pooling
• I.e. an information structure in which generalized QA pooling is exactly correct
• Satopää et al. (2017) give a Bayesian justification for generalized linear pooling
• I give a Bayesian justification for generalized logarithmic pooling
• Is there a Bayesian justification for generalized QA pooling for all ?
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Learning weights for log pooling
(Joint work with Tim Roughgarden)

• Recall: “If is bounded, weights for QA pooling can be no-regret 
learned efficiently”

• But what about the log scoring rule?
• We show how to do no-regret learning of experts’ weights even in this 

setting, provided that experts are calibrated
• We use a modification of the online mirror descent (OMD) algorithm, with the 

Tsallis entropy regularizer
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Robust aggregation of substitutable signals (1/3)
(Joint work with Tim Roughgarden)

• Alice says 60%, Bob says 75%, what should aggregator say?
• If Alice is strictly more informed: 60%. If Bob is more informed: 75%.
• If they are updating from 50/50 with conditionally independent evidence: 82%
• The “right answer” could be anything – it depends!
• “Robust” solution concept: worst case over information structures

• Goal: compete with “perfect” aggregator who knows all experts’ 
information

• Problem: “XOR information structure” – Alice receives , Bob receives 
, answer is 

• Alice and Bob both say ; aggregator can’t do any better
• Restrict space of allowed information structures?



• We explore informational substitutes (roughly: experts’ information is 
substitutable rather than complementary)

• Standard notion: weak substitutes (Chen & Waggoner, 2016)
• To get nontrivial results, we give a stronger notion: projective substitutes

Our bounds on what approximation guarantees are attainable (m = # experts)

Robust aggregation of substitutable signals (2/3)
(Joint work with Tim Roughgarden)



Robust aggregation of substitutable signals (3/3)
(Joint work with Tim Roughgarden)



Robust aggregation: Future directions

• Generalizing robust aggregation results beyond squared error
• E.g. KL divergence (more appropriate for probabilistic forecasts)

• “Exploring the playground” of robust aggregation
• Which loss function?
• Assumptions about information structure?
• What does the aggregator know?
• What does the aggregator learn from the experts?
• Experts truthful or strategic?
• Benchmark?
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Does agreement imply accuracy?
(Joint work with Raf Frongillo and Bo Waggoner)

• Alice and Bob have different information, leading to different beliefs
• Can efficiently exchange information in order to reach agreement?

• Yes! (Aaronson 2004)
• But the agreed-upon value might not be accurate (might be different from 

their belief if they exchanged all information)

• Are there natural sufficient conditions under which agreement implies 
accuracy?

• Yes! A (different) notion of informational substitutes
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Deductive circuit estimation (1/3)
(Joint work with Paul Christiano, Jacob Hilton, Václav Rozhoň, and Mark Xu)

• How can you estimate the acceptance probability of a boolean circuit?
• Obvious answer: sampling random inputs (or MCMC, etc.)

• These are based on inductive reasoning about the circuit
• Less obvious answer: deductive reasoning about the structure of the circuit

• Ex. 1: 𝐶 𝑎, 𝑏, 𝑐 = 1 if max 𝑎, 𝑏 = max 𝑏, 𝑐
• Reasoning: 𝑏 ≥ 𝑎, 𝑐 w.p. 1/3

• Ex. 2: 𝐶 𝑥 computes SHA-256(𝑥), returns 1 if first 128 bits > last 128 bits
• Reasoning: can think of output of SHA-256 as independent random bits  ½

• Ex. 3: 𝐶 is a particular 3CNF with 𝑘 clauses

• Reasoning: on average, circuits with this structure have acceptance probability ଻

଼

௞

• Ex. 4: 𝐶 takes integer 𝑘 ∈ 𝑒ଵ଴଴, 𝑒ଵ଴ଵ , outputs 1 if 𝑘, 𝑘 + 2 are both prime
• Reasoning: density of primes ≈ 1% 1% ଶ = 0.01%

• Better reasoning: 𝑘 is prime  𝑘 is odd  𝑘 + 2 is odd  𝑘 + 2 more likely to be prime  0.02%

• Can refine this further, e.g. by considering that 𝑘 is not divisible by 3



Deductive circuit estimation (2/3)
(Joint work with Paul Christiano, Jacob Hilton, Václav Rozhoň, and Mark Xu)

• Why deductive reasoning?
• Helps you understand why a circuit has a certain acceptance probability
• Can notice different reasons for acceptance

• Recall 𝐶 𝑎, 𝑏, 𝑐 = 1 if max 𝑎, 𝑏 = max 𝑏, 𝑐 . Can notice 𝑏 ≥ 𝑎, 𝑐 vs. 𝑎 = 𝑐

• Our goal: create a deductive estimation algorithm:
• Input: boolean circuit C, set of deductive arguments about C
• Output: estimate of C’s acceptance probability based on those arguments

• Somewhat analogous to proof verification
• Input to proof verifier: statement and alleged proof. Output: accept/reject.
• It’s not trying to find the proof, only assess the given proof!
• Similarly, we aren’t trying to find deductive arguments, just assess and 

incorporate the given ones.



Deductive circuit estimation (3/3)
(Joint work with Paul Christiano, Jacob Hilton, Václav Rozhoň, and Mark Xu)

• Our notation for deductive estimation algorithm: 
• is circuit; ଵ ௠ is the set of arguments

• Desiderata for :
• Linearity: ଵ

ଶ ௜ ௜

• Respect for proofs: a proof that ଵ ଵ ௞ ௞ can be turned into 
an argument such that

ଵ ଵ ௞ ௞

• 0-1 boundedness: for all 

• We give an algorithm that satisfies linearity + respect for proofs…
• …but show that no polynomial-time can satisfy all three (assuming )

• We discuss potential further desiderata for 



Deductive circuit estimation: Future directions
• Design a good deductive estimation algorithm!

• Figure out what “good” means (state some formal desiderata)
• Find an algorithm that satisfies those desiderata

• I find this problem compelling for two reasons
• Seems like a fundamental theory problem (understanding and formalizing 

deductive argumentation)
• Potentially useful for the AI alignment problem
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Conclusion: The most exciting questions in ABE

• I’ve given three highlights:
• Finding Bayesian justifications for generalized QA pooling
• Further investigating robust aggregation (e.g. w.r.t. KL divergence)
• Finding a good deductive circuit estimation algorithm

• Some other exciting directions:
• Sophisticated Bayesian models for forecast aggregation
• Wagering mechanisms that produce good aggregate forecasts

• And many more!



Thank you!

• My advisor, Tim Roughgarden
• My undergraduate mentor, Matt Weinberg
• My research collaborators: Paul Christiano, Raf Frongillo, Jacob Hilton, 

George Noarov, Václav Rozhoň, Bo Waggoner, Mark Xu
• My friends, family, and communities


